Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.12.544552

ABSTRACT

Why individuals with Down Syndrome (DS, trisomy 21) are particularly susceptible to SARS-CoV-2 induced neuropathology remains largely unclear. Since the choroid plexus (CP) performs important barrier and immune-interface functions, secretes the cerebrospinal fluid and strongly expresses the ACE2 receptor and the chromosome 21 encoded TMPRSS2 protease, we hypothesized that the CP could play a role in establishing SARS-CoV-2 infection in the brain. To investigate the role of the choroid plexus in SARS-CoV-2 central nervous system infection in DS, we established a new type of brain organoid from DS and isogenic euploid control iPSC that consists of a core of appropriately patterned functional cortical neuronal cell types that is surrounded by a patent and functional choroid plexus (CPCOs). Remarkably, DS-CPCOs not only recapitulated abnormal features of DS cortical development but also revealed defects in ciliogenesis and epithelial cell polarity of the developing choroid plexus. We next demonstrate that the choroid plexus layer facilitates SARS-CoV-2 replication and infection of cortical neuronal cells, and that this is increased in DS-CPCOs. We further show that inhibition of TMPRSS2 and Furin activity inhibits SARS-CoV-2 replication in DS-CPCOs to the level observed in euploid organoids. We conclude that CPCOs are a useful model for dissecting the role of the choroid plexus in euploid and DS forebrain development and enables screening for therapeutics that can inhibit SARS-CoV-2 induced neuro-pathogenesis.


Subject(s)
Papilloma, Choroid Plexus , Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.17.524329

ABSTRACT

Aging is the primary risk factor for most neurodegenerative diseases, and recently coronavirus disease 2019 (COVID-19) has been associated with severe neurological manifestations that can eventually impact neurodegenerative conditions in the long-term. The progressive accumulation of senescent cells in vivo strongly contributes to brain aging and neurodegenerative co-morbidities but the impact of virus-induced senescence in the aetiology of neuropathologies is unknown. Here, we show that senescent cells accumulate in physiologically aged brain organoids of human origin and that senolytic treatment reduces inflammation and cellular senescence; for which we found that combined treatment with the senolytic drugs dasatinib and quercetin rejuvenates transcriptomic human brain aging clocks. We further interrogated brain frontal cortex regions in postmortem patients who succumbed to severe COVID-19 and observed increased accumulation of senescent cells as compared to age-matched control brains from non-COVID-affected individuals. Moreover, we show that exposure of human brain organoids to SARS-CoV-2 evoked cellular senescence, and that spatial transcriptomic sequencing of virus-induced senescent cells identified a unique SARS-CoV-2 variant-specific inflammatory signature that is different from endogenous naturally-emerging senescent cells. Importantly, following SARS-CoV-2 infection of human brain organoids, treatment with senolytics blocked viral retention and prevented the emergence of senescent corticothalamic and GABAergic neurons. Furthermore, we demonstrate in human ACE2 overexpressing mice that senolytic treatment ameliorates COVID-19 brain pathology following infection with SARS-CoV-2. In vivo treatment with senolytics improved SARS-CoV-2 clinical phenotype and survival, alleviated brain senescence and reactive astrogliosis, promoted survival of dopaminergic neurons, and reduced viral and senescence-associated secretory phenotype gene expression in the brain. Collectively, our findings demonstrate SARS-CoV-2 can trigger cellular senescence in the brain, and that senolytic therapy mitigates senescence-driven brain aging and multiple neuropathological sequelae caused by neurotropic viruses, including SARS-CoV-2.


Subject(s)
Inflammation , Nervous System Diseases , COVID-19 , Neurodegenerative Diseases
SELECTION OF CITATIONS
SEARCH DETAIL